Comparison of presmoothing methods in kernel density estimation under censoring
From MaRDI portal
Publication:142857
DOI10.1007/s00180-007-0076-6zbMath1223.62018OpenAlexW2119628933WikidataQ61849292 ScholiaQ61849292MaRDI QIDQ142857
M. A. Jácome, R. Cao, I. Gijbels, Irène Gijbels, Ricardo Cao, María Amalia Jácome
Publication date: 31 July 2007
Published in: Computational Statistics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00180-007-0076-6
Computational methods for problems pertaining to statistics (62-08) Density estimation (62G07) Nonparametric estimation (62G05) Censored data models (62N01)
Related Items
Logrank-type tests with presmoothing ⋮ A kernel-based parametric method for conditional density estimation ⋮ Hazard function estimation with cause-of-death data missing at random ⋮ Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions ⋮ Asymptotic-based bandwidth selection for the presmoothed density estimator with censored data ⋮ presmTP
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Variable bandwidth and local linear regression smoothers
- On semiparametric random censorship models
- Bandwidth selection in density estimation with truncated and censored data
- A comparative study of several smoothing methods in density estimation
- Multivariate locally weighted least squares regression
- The strong law under semiparametric random censorship models
- Local linear regression smoothers and their minimax efficiencies
- Nonparametric Estimation from Incomplete Observations
- Asymptotic-based bandwidth selection for the presmoothed density estimator with censored data
- Regression with censored data
- Design-adaptive Nonparametric Regression
- Local Maximum Likelihood Estimation and Inference
- Methods for Estimating a Conditional Distribution Function
- Presmoothed Kaplan–Meier and Nelson–Aalen estimators
- Strong consistency of presmoothed Kaplan–Meier integrals when covariables are present
- Presmoothed kernel density estimator for censored data
- On Non-Parametric Estimates of Density Functions and Regression Curves
- Almost sure asymptotic representation for the presmoothed distribution and density estimators for censored data