Liouville type currents for holomorphic maps.
From MaRDI portal
Publication:1565877
DOI10.1016/S1631-073X(02)02558-XzbMath1022.32012OpenAlexW2094005584MaRDI QIDQ1565877
Publication date: 27 May 2003
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s1631-073x(02)02558-x
Global differential geometry of Hermitian and Kählerian manifolds (53C55) Kähler manifolds (32Q15) Currents in global analysis (58A25) Currents (32U40) Integration on analytic sets and spaces, currents (32C30)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Function theory on manifolds which possess a pole
- An extension of E. Hopf's maximum principle with an application to Riemannian geometry
- A Liouville theorem on an analytic space
- A General Schwarz Lemma for Kahler Manifolds
- Théorèmes de type Liouville pour les courants positifs fermés
- Energy estimates and Liouville theorems for harmonic maps
This page was built for publication: Liouville type currents for holomorphic maps.