\(L_p-L_q\) decay estimates for hyperbolic equations with oscillations in coefficients
From MaRDI portal
Publication:1567589
DOI10.1007/BF02484189zbMath0947.35025OpenAlexW4242588030MaRDI QIDQ1567589
Karen Yagdjian, Michael Reissig
Publication date: 21 June 2000
Published in: Chinese Annals of Mathematics. Series B (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02484189
Second-order nonlinear hyperbolic equations (35L70) A priori estimates in context of PDEs (35B45) Initial value problems for second-order hyperbolic equations (35L15) Degenerate hyperbolic equations (35L80)
Related Items (4)
\(L^p-L^q\) estimates for wave equations with strong time-dependent oscillations ⋮ On the Klein-Gordon equation with randomized oscillating coefficients on the sphere ⋮ On the quadratic wave equation with randomized oscillating coefficients ⋮ Global analytic solutions of linear problems with shrinking argument. (Solutions analytiques globales de problémes linéaires avec argument absorbant)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Estimates for translation invariant operators in \(L^p\) spaces
- \(L^p\)-Abschätzungen und klassische Lösungen für nichtlineare Wellengleichungen. I
- On \(L_2-L_{p'}\) estimates for the wave-equation
- A priori estimates for the wave equation and some applications
- Global existence for nonlinear wave equations
- One application of Floquet's theory toLp-Lq estimates for hyperbolic equations with very fast oscillations
- Fourier transforms of surface-carried measures and differentiability of surface averages
This page was built for publication: \(L_p-L_q\) decay estimates for hyperbolic equations with oscillations in coefficients