A Siegel-Weil identity for \(G_2\) and poles of \(L\)-functions
From MaRDI portal
Publication:1568080
DOI10.1006/jnth.1999.2480zbMath0958.11035OpenAlexW2084790502MaRDI QIDQ1568080
Publication date: 11 April 2001
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jnth.1999.2480
Eisenstein seriesperiodscuspidal automorphic representation\(G_2\)polesRankin-Selberg integral\(F_4\)partial \(L\)-functionSiegel-Weil identity
Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67) Representation-theoretic methods; automorphic representations over local and global fields (11F70)
Related Items
Holomorphy of adjoint L-functions for \(\mathrm{GL}(n):n\le 4\), A Siegel-Weil formula for automorphic characters: Cubic variation of a theme of Snitz, Holomorphy of adjoint \(L\) functions for quasisplit \(A_2\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Explicit constructions of automorphic \(L\)-functions
- Some remarks on nilpotent orbits
- Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple
- A Rankin-Selberg integral for the adjoint representation of \(GL_ 3\)
- The first term identities for Eisenstein series
- A regularized Siegel-Weil formula: The first term identity
- Fourier coefficients of Eisenstein series of the exceptional group of type \(G_2\)
- On spin \(L\)-functions for orthogonal groups
- On explicit lifts of cusp forms from \(\text{GL}_m\) to classical groups
- The adjoint L-function of GL(4)
- G2-periods and residual representations
- On the archimedean theory of Rankin-Selberg convolutions for ${\rm SO}_{2l+1}\times{\rm GL}_n$
- Degree 16 standard ๐ฟ-function of ๐บ๐๐(2)ร๐บ๐๐(2)