Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Bell polynomials of arbitrary (fractional) orders\(+\)

From MaRDI portal
Publication:1569100
Jump to:navigation, search

DOI10.1016/S0096-3003(98)10088-7zbMath1022.33007OpenAlexW1964903045MaRDI QIDQ1569100

Saad Zagloul Rida, Ahmed M. A. El-Sayed

Publication date: 25 June 2000

Published in: Applied Mathematics and Computation (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1016/s0096-3003(98)10088-7

zbMATH Keywords

Laguerre polynomialsBell polynomials


Mathematics Subject Classification ID

Bell and Stirling numbers (11B73) Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45)


Related Items

Fractional calculus and generalized Rodrigues formula., A modified generalized Laguerre spectral method for fractional differential equations on the half line, General identities on Bell polynomials, Computation of certain infinite series of the form \(\sum f(n)n^k \) for arbitrary real-valued \(k\), On the generalized ultraspherical or Gegenbauer functions of fractional orders



Cites Work

  • On the fractional differential equations
  • Multivalued fractional differential equations
  • Fractional-order diffusion-wave equation
  • Linear differential equations of fractional orders
  • NONCOMMUTATIVE BELL POLYNOMIALS
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1569100&oldid=13850483"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 1 February 2024, at 02:17.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki