Computation of fractional integrals via functions of hypergeometric and Bessel type
DOI10.1016/S0377-0427(00)00291-0zbMath0966.65022WikidataQ127946051 ScholiaQ127946051MaRDI QIDQ1571021
Juan J. Trujillo, Anatoliy Aleksandrovich Kilbas
Publication date: 1 August 2001
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
modified Bessel function of the third kindLiouville and Erdelyi-Kober-type fractional integralsTricomi confluent hypergeometric function
Fractional derivatives and integrals (26A33) Computation of special functions and constants, construction of tables (65D20) Bessel and Airy functions, cylinder functions, ({}_0F_1) (33C10) Confluent hypergeometric functions, Whittaker functions, ({}_1F_1) (33C15)
Related Items (9)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A modified Bessel-type integral transform and its compositions with fractional calculus operators on spaces \(F_{p,\mu}\) and \(F_{p,\mu}^{\prime}\)
- Fractional Derivatives and Special Functions
- Bemerkungen zur Meijer‐Transformation und Anwendungen
- Leibniz Rule for Fractional Derivatives Generalized and an Application to Infinite Series
- Taylor’s Series Generalized for Fractional Derivatives and Applications
This page was built for publication: Computation of fractional integrals via functions of hypergeometric and Bessel type