Numerical knot invariants of finite type from Chern-Simons perturbation theory
From MaRDI portal
Publication:1571416
DOI10.1016/0550-3213(94)00430-MzbMath1020.57500arXivhep-th/9407076MaRDI QIDQ1571416
Publication date: 10 July 2000
Published in: Nuclear Physics. B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/hep-th/9407076
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (16)
Chern-Simons perturbative series revisited ⋮ HOMFLY polynomials in representation \([3, 1\) for 3-strand braids] ⋮ Chern-Simons theory, matrix integrals, and perturbative three-manifold invariants ⋮ A new symmetry of the colored Alexander polynomial ⋮ On genus expansion of superpolynomials ⋮ Chern-Simons theory in the temporal gauge and knot invariants through the universal quantum R-matrix ⋮ Towards tangle calculus for Khovanov polynomials ⋮ Genus expansion of HOMFLY polynomials ⋮ Perturbative analysis of the colored Alexander polynomial and KP soliton \(\tau\)-functions ⋮ Coloured Alexander polynomials and KP hierarchy ⋮ The application of numerical topological invariants in simulations of knotted rings: A comprehensive Monte Carlo approach ⋮ Hidden structures of knot invariants ⋮ Chern-Simons solutions of the chiral teleparallelism constraints of gravity ⋮ Kontsevich integral for Vassiliev invariants from Chern–Simons perturbation theory in the light-cone gauge ⋮ KONTSEVICH INTEGRAL FOR KNOTS AND VASSILIEV INVARIANTS ⋮ Configuration spaces and Vassiliev classes in any dimension
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- SU(2) Chern-Simons theory at genus zero
- Geometric quantization of Chern-Simons gauge theory
- Hecke algebra representations of braid groups and link polynomials
- Quantum field theory and the Jones polynomial
- Quantum field theory techniques in graphical enumeration
- The Conway polynomial
- Perturbative expansion of Chern-Simons theory with non-compact Gauge group
- New hierarchies of knot polynomials from topological Chern-Simons gauge theory
- On the Vassiliev knot invariants
- The Chern-Simons theory and knot polynomials
- Three-dimensional Chern-Simons theory as a theory of knots and links. III: Compact semi-simple group
- Three-dimensional Chern-Simons theory as a theory of knots and links
- Knot polynomials and Vassiliev's invariants
- A polynomial invariant for knots via von Neumann algebras
- A new polynomial invariant of knots and links
- New points of view in knot theory
- An Invariant of Regular Isotopy
- PERTURBATIVE CHERN-SIMONS THEORY
- Remarks on topological Chern-Simons theory
This page was built for publication: Numerical knot invariants of finite type from Chern-Simons perturbation theory