Exactly marginal operators and duality in four-dimensional \(N=1\) supersymmetric gauge theory
From MaRDI portal
Publication:1571658
DOI10.1016/0550-3213(95)00261-PzbMATH Open1009.81570arXivhep-th/9503121OpenAlexW3103707535MaRDI QIDQ1571658
Author name not available (Why is that?)
Publication date: 11 July 2000
Published in: (Search for Journal in Brave)
Abstract: We show that manifolds of fixed points, which are generated by exactly marginal operators, are common in N=1 supersymmetric gauge theory. We present a unified and simple prescription for identifying these operators, using tools similar to those employed in two-dimensional N=2 supersymmetry. In particular we rely on the work of Shifman and Vainshtein relating the -function of the gauge coupling to the anomalous dimensions of the matter fields. Finite N=1 models, which have marginal operators at zero coupling, are easily identified using our approach. The method can also be employed to find manifolds of fixed points which do not include the free theory; these are seen in certain models with product gauge groups and in many non-renormalizable effective theories. For a number of our models, S-duality may have interesting implications. Using the fact that relevant perturbations often cause one manifold of fixed points to flow to another, we propose a specific mechanism through which the N=1 duality discovered by Seiberg could be associated with the duality of finite N=2 models.
Full work available at URL: https://arxiv.org/abs/hep-th/9503121
No records found.
This page was built for publication: Exactly marginal operators and duality in four-dimensional \(N=1\) supersymmetric gauge theory
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q1571658)