Applications of the \(p\)-adic Nevanlinna theory to functional equations.
DOI10.5802/aif.1771zbMath1063.30043OpenAlexW2318843856MaRDI QIDQ1572630
Abdelbaki Boutabaa, Alain Escassut
Publication date: 19 July 2000
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2000__50_3_751_0
Functional analysis over fields other than (mathbb{R}) or (mathbb{C}) or the quaternions; non-Archimedean functional analysis (46S10) Value distribution of meromorphic functions of one complex variable, Nevanlinna theory (30D35) Non-Archimedean function theory (30G06) Functional equations and inequalities (39B99)
Related Items (7)
Cites Work
- Theorie de Nevanlinna p-adique. (p-adic Nevanlinna theory)
- Urs, ursim, and non-urs for \(p\)-adic functions and polynomials
- Non-Archimedean analytic curves in Abelian varieties
- On uniqueness of \(p\)-adic entire functions
- Property \(f^{-1}(S)=g^{-1}(S)\) for entire and meromorphic \(P\)-adic functions
- URS AND URSIMS FOR P-ADIC MEROMORPHIC FUNCTIONS INSIDE A DISC
- On the equation 𝑓ⁿ+𝑔ⁿ=1
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Applications of the \(p\)-adic Nevanlinna theory to functional equations.