Fefferman's SAK principle in one dimension
DOI10.5802/aif.1791zbMath0956.35141OpenAlexW2329482557MaRDI QIDQ1572651
Publication date: 19 July 2000
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2000__50_4_1229_0
uncertainty principlemicrolocal analysispseudo-differential operatorsWeyl-Hörmander calculusGårding inequalityFefferman-Phong inequalitySAK principle
Pseudodifferential operators as generalizations of partial differential operators (35S05) Partial differential inequalities and systems of partial differential inequalities (35R45) Schrödinger operator, Schrödinger equation (35J10) Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs (35A27)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. (Maximal hypoellipticity for polynomial operators of vector fields)
- Encadrement du N(\(\lambda\) ) pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique. (Inclusion of N(\(\lambda\) ) for a Schrödinger operator with magnetic field and electric potential)
- The uncertainty principle
- The uncertainty principle and sharp gårding inequalities
- On positivity of pseudo-differential operators
- Espaces fonctionnels associés au calcul de Weyl-Hörmander
- Estimates in L^p for magnetic Schrodinger operators
- Quantification asymptotique et microlocalisations d'ordre supérieur. I
- Lower bounds for pseudo-differential operators
This page was built for publication: Fefferman's SAK principle in one dimension