A new lower bound for the bipartite crossing number with applications
From MaRDI portal
Publication:1575746
DOI10.1016/S0304-3975(99)00285-6zbMath0946.68102OpenAlexW2035922087MaRDI QIDQ1575746
Farhad Shahrokhi, Ondrej Sýkora, László A. Székely, Imrich Vrt'o
Publication date: 21 August 2000
Published in: Theoretical Computer Science (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0304-3975(99)00285-6
hypercubeisoperimetric inequalitiesLaplacian eigenvalueslower boundsmeshbipartite crossing numberMenger's theorem
Graph theory (including graph drawing) in computer science (68R10) Hardware implementations of nonnumerical algorithms (VLSI algorithms, etc.) (68W35)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A framework for solving VLSI graph layout problems
- Bipartite permutation graphs
- On induced subgraphs of the cube
- Edge-isoperimetric inequalities in the grid
- Optimal linear labelings and eigenvalues of graphs
- Edge crossings in drawings of bipartite graphs
- Algorithms for drawing graphs: An annotated bibliography
- Matchings and paths in the cube
- A tabu search algorithm for the bipartite drawing problem
- Edge isoperimetric theorems for integer point arrays
- Crossing Number is NP-Complete
- Crossing Theory and Hierarchy Mapping
- 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms
- On bipartite crossings, largest biplanar subgraphs, and the linear arrangement problem
- Determinants, Permanents and Bipartite Graphs
- Optimal Assignments of Numbers to Vertices
- A SPECIAL CROSSING NUMBER FOR BIPARTITE GRAPHS: A RESEARCH PROBLEM
- Crossing Number Problems