Geometry and topology of operators on Hilbert \(C^*\)-modules
From MaRDI portal
Publication:1576012
DOI10.1007/BF02355449zbMath0959.46043MaRDI QIDQ1576012
Publication date: 27 August 2000
Published in: Journal of Mathematical Sciences (New York) (Search for Journal in Brave)
operatorcontractibilitymultiplier algebraHilbert \(C^*\)-modulestrict topologyDixmier-Douady theorem\(C^*\)-algebra of compact operatorsCuntz-Higson theoremtopological properties of the full linear group
Related Items (2)
Manuilov algebra, \(C^\ast\)-Hilbert modules, and Kuiper type theorems ⋮ Hilbert \(C^*\) and \(W^*\)-modules and their morphisms
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Contractibility of the full general linear group of the \(C^ *\)-Hilbert module \(\ell _ 2(A)\)
- A set of maps from \(K\) to \(\mathrm{End}_ A(\ell _ 2(A))\) isomorphic to \(\mathrm{End}_{A(K)}(\ell _ 2(A(K)))\). Applications
- On \(C^*\)-algebras A over which the Hilbert module \(l_ 2(A)\) is self- dual
- On the contractability of the unitary group of the Hilbert space over a C*-algebra
- Hilbert \(C^*\) and \(W^*\)-modules and their morphisms
- Self-duality and \(C^*\)-reflexivity of Hilbert \(C^*\)-moduli
- The homotopy type of the unitary group of Hilbert space
- Der Homotopietyp der Automorphismengruppe in den Räumen \(l_ p\) und \(c_ 0\)
- Multipliers of C -algebras
- On Spaces Having the Homotopy Type of a CW-Complex
- Finite Rank Operators and Functional Calculus on Hilbert Modules over Abelian C*-Algebras
- K-Theory and Multipliers of Stable C ∗ -Algebras
- Champs continus d'espaces hilbertiens et de $C^*$-algèbres
- Inner Product Modules Over B ∗ -Algebras
- Theory of operator algebras I.
This page was built for publication: Geometry and topology of operators on Hilbert \(C^*\)-modules