Higher type recursion, ramification and polynomial time
DOI10.1016/S0168-0072(00)00006-3zbMath0959.03027OpenAlexW1970954854MaRDI QIDQ1577477
Helmut Schwichtenberg, Stephen J. Bellantoni, Karl-Heinz Niggl
Publication date: 4 September 2000
Published in: Annals of Pure and Applied Logic (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0168-0072(00)00006-3
lambda calculusnormalisationhigher type recursionpolynomial-time computable functionsramified recursion
Theory of programming languages (68N15) Complexity of computation (including implicit computational complexity) (03D15) Grammars and rewriting systems (68Q42) Complexity classes (hierarchies, relations among complexity classes, etc.) (68Q15) Recursive functions and relations, subrecursive hierarchies (03D20) Functionals in proof theory (03F10) Second- and higher-order arithmetic and fragments (03F35) Proof theory in general (including proof-theoretic semantics) (03F03) Combinatory logic and lambda calculus (03B40) Higher-type and set recursion theory (03D65)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The realm of primitive recursion
- A new recursion-theoretic characterization of the polytime functions
- Light linear logic
- Short proofs of normalization for the simply-typed \(\lambda\)-calculus, permutative conversions and Gödel's \(\mathbf T\)
- ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES
- Ranking Primitive Recursions: The Low Grzegorczyk Classes Revisited