Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

On convolution operators in the spaces of almost periodic functions and \(L^p\) spaces

From MaRDI portal
Publication:1578904
Jump to:navigation, search

DOI10.4171/ZAA/955zbMath0972.47036OpenAlexW2020213672MaRDI QIDQ1578904

Giordano Bruno, Alexander A. Pankov

Publication date: 16 November 2000

Published in: Zeitschrift für Analysis und ihre Anwendungen (Search for Journal in Brave)

Full work available at URL: https://eudml.org/doc/48948


zbMATH Keywords

convolution operatorsspaces of Bohr, Stepanov and Besicovich of almost periodic functions


Mathematics Subject Classification ID

Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Integral operators (47G10)


Related Items (1)

Weighted \(S^p\)-pseudo \(S\)-asymptotic periodicity and applications to Volterra integral equations



Cites Work

  • Theorems on the coincidence of the spectra of pseudodifferential almost-periodic operators in the spaces \(L^2(\mathbb R^n)\) and \(B^2(\mathbb R^n)\)
  • Almost periodic functions, Bohr compactification, and differential equations
  • ALMOST PERIODIC FUNCTIONS AND PARTIAL DIFFERENTIAL OPERATORS
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item


This page was built for publication: On convolution operators in the spaces of almost periodic functions and \(L^p\) spaces

Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1578904&oldid=13867262"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 1 February 2024, at 02:55.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki