A co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams
DOI10.1016/S0045-7825(99)00284-4zbMath0990.74066OpenAlexW2047549556MaRDI QIDQ1579621
Publication date: 8 November 2000
Published in: Computer Methods in Applied Mechanics and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0045-7825(99)00284-4
bendingbucklingNewton-Raphson methodpostbucklingstretchingbisection methodincremental-iterative methodconsistent co-rotational finite element formulationeffect of third-order termsfully geometrically nonlinear beam theorysecond-order linearizationstangent stiffness matrix determinantthree-dimensional elastic Euler beam
Rods (beams, columns, shafts, arches, rings, etc.) (74K10) Finite element methods applied to problems in solid mechanics (74S05) Bifurcation and buckling (74G60)
Related Items (9)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A three-dimensional finite-strain rod model. II. Computational aspects
- On a consistent theory, and variational formulation of finitely stretched and rotated 3-D space-curved beams
- On the geometrical stiffness of a beam in space - A consistent v.w. approach
- Nonlinear finite element analysis of elastic systems under nonconservative loading - natural formulation. Part I. Quasistatic problems
- Finite element method - The natural approach
- A kinematically exact space finite strain beam model -- finite element formulation by generalized virtual work principle
- A consistent finite element formulation for linear buckling analysis of spatial beams
- A consistent co-rotational formulation for nonlinear, three-dimensional, beam-elements
- The role of non-linear theories in transient dynamic analysis of flexible structures
- Finite element analysis of lateral buckling for beam structures
- Displacement dependent pressure loads in nonlinear finite element analyses
- Lateral buckling analysis of beams by the fem
- Nonlinear analysis of general shell structures by flat triangular shell element
- A beam finite element non-linear theory with finite rotations
- A fast incremental/iterative solution procedure that handles “snap-through”
- Effective modelling of spatial buckling of beam assemblages, accounting for warping constraints and rotation-dependency of moments
- Corotational total Lagrangian formulation for three-dimensional beamelement
- A new finite element scheme for instability analysis of thin shells
- Generalized mixed finite element model for pre‐ and post‐quasistatic buckling response of thin‐walled framed structures
- On the role of geometrically exact and second-order theories in buckling and post-buckling analysis of three-dimensional beam structures
- SPATIAL STABILITY ANALYSIS OF THIN-WALLED SPACE FRAMES
- Finite element analysis of torsional and torsional–flexural stability problems
- On large displacement-small strain analysis of structures with rotational degrees of freedom
- A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems
- On large displacement-small strain analysis of structures with rotational degrees of freedom
- A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems
This page was built for publication: A co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams