Acyclic \(k\)-strong coloring of maps on surfaces
From MaRDI portal
Publication:1581455
DOI10.1007/BF02675788zbMath0965.05043OpenAlexW1998236685MaRDI QIDQ1581455
Eric Sopena, Alexandr V. Kostochka, Oleg V. Borodin, Andre Raspaud
Publication date: 16 October 2000
Published in: Mathematical Notes (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02675788
Planar graphs; geometric and topological aspects of graph theory (05C10) Coloring of graphs and hypergraphs (05C15)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Ein 7-Farbensatz 1-einbettbarer Graphen auf der projektiven Ebene
- Every planar graph has an acyclic 7-coloring
- Homomorphisms of edge-colored graphs and Coxeter groups
- On cyclic colorings and their generalizations
- Good and semi-strong colorings of oriented planar graphs
- The star arboricity of graphs
- On acyclic colorings of graphs on surfaces
- Ein Sechsfarbenproblem auf der Kugel
- Acyclic colorings of planar graphs
This page was built for publication: Acyclic \(k\)-strong coloring of maps on surfaces