Some classification results for hyperbolic equations \(F(x,y,u,u_x,u_y,u_{xx},u_{xy},u_{yy})=0\)
From MaRDI portal
Publication:1581859
DOI10.1006/jdeq.1999.3725zbMath0959.35123OpenAlexW2083617110MaRDI QIDQ1581859
Publication date: 26 April 2001
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jdeq.1999.3725
Klein-Gordon equationEuler-Poisson-Darboux equationLiouville equationhyperbolic Monge-Ampère equationexact integrabilityDarboux methodgeneralized Laplace invariants\(f\)-Gordon equationFermi-Ulam-Pasta equation
Second-order nonlinear hyperbolic equations (35L70) Transform methods (e.g., integral transforms) applied to PDEs (35A22) Second-order hyperbolic equations (35L10)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Coupled systems of nonlinear wave equations and finite-dimensional Lie algebras. I
- Coupled systems of nonlinear wave equations and finite-dimensional Lie algebras. II: A nonlinear system arising from the group \(G_{6,1}\) and its exact integration
- Characteristics and the geometry of hyperbolic equations in the plane
- Homological method of computing invariants of systems of differential equations
- An obstruction to the integrability of a class of nonlinear wave equations by 1-stable Cartan characteristics
- The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane
- Generalized Laplace invariants and the method of Darboux
- Equivalence of the Darboux and Gardner methods for integrating hyperbolic equations in the plane
- Hyperbolic exterior differential systems and their conservation laws. I
- Hyperbolic exterior differential systems and their conservation laws. II
- On the Darboux integrable hyperbolic equations
- Sur les équations aux dérivées partielles du second ordre, \(F(x,y,z,p,q,r,s,t)=0\), intégrables par la méthode de Darboux
- Sur les équations aux dérivées partielles du second ordre, F(x,y,z, p,q,r,s,t)=0, intégrables par la méthode de Darboux. 2
- A Solvable Nonlinear Wave Equation
- On Equations Which Describe Pseudospherical Surfaces
- On equations of type u x t=F(u,u x) which describe pseudospherical surfaces
- Pseudospherical Surfaces and Evolution Equations