\(L^p\) estimates for \(\overline\partial\)-equation on generalized complex ellipsoids
From MaRDI portal
Publication:1585586
DOI10.1007/BF02897157zbMath0979.32018MaRDI QIDQ1585586
Publication date: 16 November 2000
Published in: Science in China. Series A (Search for Journal in Brave)
estimates of \(\overline\partial\)-equationsgeneralized complex ellipsoidHenkin solutionsholomorphic supporting function
Cites Work
- Hölder and \(L^ p\)-estimates for the \({\bar\partial}\)-equation in some convex domains with real-analytic boundary
- Characterizations of certain weakly pseudoconvex domains E(k,\(\alpha\) ) in \({\mathbb{C}}^ n\)
- Estimations along components for the \(\bar{\partial}\)-Neumann problem for some classes of pseudoconvex domains in \(\mathbb{C}^ n\).
- Local analyticity for the \(\bar {\partial{}}\)-Neumann problem and \({\square{}}_ b\) -- some model domains without maximal estimates
- Optimal Lipschitz and \(L^p\) regularity for the equation \(\overline\partial u=f\) on strongly pseudo-convex domains
- Optimal \(L^ p\) estimates for the \(\bar \partial\)-equation on complex ellipsoids in \(\mathbb{C}^ n\)
- Estimates for the \(\bar \partial\)-Neumann problem in pseudoconvex domains of finite type in \(\mathbb{C}^ 2\)
- Optimal Hoelder and L p Estimates for ∂ b on the Boundaries of Real Ellipsoids in C n
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item