Global regularity of 3D rotating Navier-Stokes equations for resonant domains
DOI10.1016/S0893-9659(99)00208-6zbMath0963.76020OpenAlexW2013742357MaRDI QIDQ1588774
A. Babin, Basil Nicolaenko, A. S. Makhalov
Publication date: 4 December 2000
Published in: Applied Mathematics Letters (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0893-9659(99)00208-6
convergencethree-dimensional Navier-Stokes equationsglobal existenceglobal regularitylimit equationsbootstrapping methoddyadic decompositioninfinite time regularitylimit of strong rotationwaver resonances
Navier-Stokes equations for incompressible viscous fluids (76D05) General theory of rotating fluids (76U05) Navier-Stokes equations (35Q30) Existence, uniqueness, and regularity theory for incompressible viscous fluids (76D03)
Related Items (18)
Cites Work
- Invariant helical subspaces for the Navier-Stokes equations
- Resonances and regularity for Boussinesq equations
- Applications of Schochet's methods to parabolic equations
- On regularity of solutions of 3D navier-stokes equations
- Navier-Stokes Equations on Thin 3D Domains. I: Global Attractors and Global Regularity of Solutions
- Small denominators. I. Mappings of the circumference onto itself
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Global regularity of 3D rotating Navier-Stokes equations for resonant domains