The Monge-Ampère operator and slicing of closed positive currents
From MaRDI portal
Publication:1589316
DOI10.1007/BF02921809zbMath1005.32023MaRDI QIDQ1589316
Hassine El Mir, Hèdi Ben Messaoud
Publication date: 11 December 2000
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
potentialplurisubharmonic functionLelong numbersMonge-Ampère operatorclosed positive currentslicing formula
Complex Monge-Ampère operators (32W20) Lelong numbers (32U25) Currents (32U40) Integration on analytic sets and spaces, currents (32C30)
Related Items (11)
Flatness of the positive plurisubharmonic currents ⋮ Characterization of multiplier ideal sheaves with weights of Lelong number one ⋮ Lelong numbers of potentials associated with positive closed currents and applications ⋮ Wedge product of positive currents and balanced manifolds ⋮ A dual of the Chow transformation ⋮ m-Potential theory associated to a positive closed current in the class ofm-sh functions ⋮ Extension of negative plurisubharmonic current with condition on the slices ⋮ Numerically trivial foliations. ⋮ Extension of a positive plurisubharmonic current. ⋮ Complex Hessian operator associated to an \(m\)-positive closed current and weighted \(m\)-capacity ⋮ \(m\)-potential theory and \(m\)-generalized Lelong numbers associated with \(m\)-positive supercurrents
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sur le prolongement des courants positifs fermés
- Über die Fortsetzbarkeit analytischer Mengen endlichen Oberflächeninhaltes
- A new capacity for plurisubharmonic functions
- Quelques problèmes de prolongement de courants en analyse complexe
- Prolongement des courants, positifs, fermes de masse finie
- Extension of meromorphic maps into Kähler manifolds
- Slicing and extension of closed positive currents
- A characterization of holomorphic chains
- Analyticity of sets associated to Lelong numbers and the extension of closed positive currents
- Oka's inequality for currents and applications
- Slicing of closed positive currents and the equation of Lelong-Poincaré
- Über den Flächeninhalt analytischer Mengen udn die Erzeugung k- pseudokonvexer Gebiete
- Lelong numbers of positive plurisubharmonic currents
- Sur l'existence du cône tangent à un courant positif fermé. (About the existence of the tangent cone with positive closed current)
- Extending analytic objects
This page was built for publication: The Monge-Ampère operator and slicing of closed positive currents