Exponential decay of the power spectrum of turbulence.
From MaRDI portal
Publication:1593272
DOI10.1007/BF02178549zbMath1081.35505OpenAlexW2091523072MaRDI QIDQ1593272
Peter Constantin, Hari Bercovici, Ciprian Foias, Oscar P. Manley
Publication date: 16 January 2001
Published in: Journal of Statistical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02178549
Related Items
Abstract framework for the theory of statistical solutions ⋮ Estimates on enstrophy, palinstrophy, and invariant measures for 2-D turbulence ⋮ On the convergence of statistical solutions of the 3D Navier-Stokes-\(\alpha\) model as \(\alpha\) vanishes ⋮ Statistical estimates for channel flows driven by a pressure gradient ⋮ Convergence of time averages of weak solutions of the three-dimensional Navier-Stokes equations ⋮ Inviscid limit for damped and driven incompressible Navier-Stokes equations in \(\mathbb R^2\) ⋮ Invariant measures for dissipative dynamical systems: abstract results and applications ⋮ On the non-homogeneous stationary Kuramoto-Sivashinsky equation ⋮ Construction of non-analytic solutions for the generalized KdV equation ⋮ Some results on the Navier-Stokes equations in connection with the statistical theory of stationary turbulence. ⋮ Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations ⋮ Some specific mathematical constraints on 2D turbulence ⋮ Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations ⋮ Ergodic theory for energetically open compressible fluid flows ⋮ Kolmogorov theory via finite-time averages ⋮ A remark on time-analyticity for the Kuramoto--Sivashinsky equation
Cites Work
- Notes on Pólya's and Turán's hypotheses concerning Liouville's factor
- Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique
- La théorie générale de la mesure dans son application à l'étude des systèmes dynamiques de la mécanique non linéaire
- Unnamed Item
- Unnamed Item
- Unnamed Item