Automatic differentiation of algorithms
DOI10.1016/S0377-0427(00)00422-2zbMath0994.65020WikidataQ56429730 ScholiaQ56429730MaRDI QIDQ1593824
Steven Brown, Michael Bartholomew-Biggs, Bruce Christianson, L. C. W. Dixon
Publication date: 25 January 2001
Published in: Journal of Computational and Applied Mathematics (Search for Journal in Brave)
algorithmoptimal controlnumerical examplesinterval analysisnonlinear optimizationerror analysisparallelismautomatic differentiationpenalty functionsprogram transformationfunction approximationcheckpointsimplicit equationsvariable momentumadjoint programming
Symbolic computation and algebraic computation (68W30) Numerical mathematical programming methods (65K05) Nonlinear programming (90C30) Numerical optimization and variational techniques (65K10) General methods in interval analysis (65G40) Parallel numerical computation (65Y05) Numerical differentiation (65D25)
Related Items
Cites Work
- Automatic computation of derivatives with the use of the multilevel differentiating technique. I: Algorithmic basis
- Using forward accumulation for automatic differentiation of implicitly-defined functions
- Geometric approach to Fletcher's ideal penalty function
- Differential dynamic programming and Newton's method
- Recipes for adjoint code construction
- Reverse aumulation and imploicit functions
- Giving reverse differentiation a helping hand∗
- Cheap Newton steps for optimal control problems: automatic differentiation and Pantoja's algorithm
- A simple automatic derivative evaluation program
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item