The trace formula for Lie algebras.
From MaRDI portal
Publication:1598162
DOI10.1007/s002080100274zbMath1146.11315OpenAlexW2003770622MaRDI QIDQ1598162
Publication date: 29 May 2002
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s002080100274
Representations of Lie algebras and Lie superalgebras, analytic theory (17B15) Representation-theoretic methods; automorphic representations over local and global fields (11F70) Spectral theory; trace formulas (e.g., that of Selberg) (11F72) Representations of Lie and linear algebraic groups over global fields and adèle rings (22E55)
Related Items (10)
An infinitesimal variant of the Guo-Jacquet trace formula. I: The case of \((\mathrm{GL}_{2n, D}, \mathrm{GL}_{n, D}\times \mathrm{GL}_{n, D})\) ⋮ LA VARIANTE INFINITÉSIMALE DE LA FORMULE DES TRACES DE JACQUET-RALLIS POUR LES GROUPES LINÉAIRES ⋮ Zeta Functions for the Adjoint Action of GL(n) and Density of Residues of Dedekind Zeta Functions ⋮ A coarse geometric expansion of a variant of Arthur's truncated traces and some applications ⋮ On the unipotent contribution in Arthur's trace formula for general linear groups ⋮ On relative trace formulae: the case of Jacquet-Rallis ⋮ Le lemme fondamental pondéré. I. Constructions géométriques ⋮ An infinitesimal variant of the Guo-Jacquet trace formula. II ⋮ Limit multiplicities for \({\text{SL}}_2(\mathcal{O}_F)\) in \({\text{SL}}_2(\mathbb{R}^{r_1}\oplus\mathbb{C}^{R_2})\) ⋮ Le transfert singulier pour la formule des traces de Jacquet–Rallis
This page was built for publication: The trace formula for Lie algebras.