The Borel-Bernstein theorem for multidimensional continued fractions
DOI10.1007/BF02788074zbMath1015.11039OpenAlexW2169029961MaRDI QIDQ1604965
Publication date: 10 July 2002
Published in: Journal d'Analyse Mathématique (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02788074
Jacobi-Perron algorithminterval exchange transformationsFarey fractionsPoincaré algorithmmultidimensional continued fraction expansionsBorel-Bernstein theoremmetric theory of regular continued fractionsrecurrent multidimensional continued fraction algorithms
Topological dynamics (37B99) Strong limit theorems (60F15) Metric theory of other algorithms and expansions; measure and Hausdorff dimension (11K55) Metric theory of continued fractions (11K50)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Gauss measures for transformations on the space of interval exchange maps
- Interval exchange transformations and measured foliations
- The metrical theory of Jacobi-Perron algorithm
- The three-dimensional Poincaré continued fraction algorithm
- Metrische Sätze über den Jacobischen Algorithmus
- Échanges d'intervalles et transformations induites
- Measured foliations on nonorientable surfaces
- Ergodic properties of some permutation processes
- Simplicial systems for interval exchange maps and measured foliations
- The Metric Theory of Interval Exchange Transformations II. Approximation by Primitive Interval Exchanges
- On the Parry-Daniels Transformation
- Mesures de Gauss pour des algorithmes de fractions continues multidimensionnelles
- Geodesic Multidimensional Continued Fractions
- Topological weak-mixing of interval exchange maps
- Interval exchange transformations
This page was built for publication: The Borel-Bernstein theorem for multidimensional continued fractions