Lyndon words and shuffle algebras for generating the coloured multiple zeta values relations tables
DOI10.1016/S0304-3975(00)00445-XzbMath1014.68126OpenAlexW1987152438MaRDI QIDQ1605342
M. Bigotte, Michel Petitot, Nour Eddine Oussous, Gérard Jacob
Publication date: 15 July 2002
Published in: Theoretical Computer Science (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0304-3975(00)00445-x
Gröbner basisLyndon wordsquasi-symmetric functionshuffle algebracoloured multiple zeta values functioncoloured polylogarithm function
Combinatorics on words (68R15) Symmetric functions and generalizations (05E05) Polylogarithms and relations with (K)-theory (11G55) Numerical approximation and evaluation of special functions (33F05) Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.) (33F10) Multiple Dirichlet series and zeta functions and multizeta values (11M32)
Related Items
Uses Software
Cites Work
- Combinatorial aspects of multiple zeta values
- A natural ring basis for the shuffle algebra and an application to group schemes
- Multiple polylogarithms, cyclotomy and modular complexes
- Evaluations of \(k\)-fold Euler/Zagier sums: a compendium of results for arbitrary \(k\)
- Duality between quasi-symmetric functions and the Solomon descent algebra
- Quasi-shuffle products
- Lyndon Words, Free Algebras and Shuffles
- Algebras of Iterated Path Integrals and Fundamental Groups
- Free differential calculus. IV: The quotient groups of the lower central series
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item