Generalized von Kármán equations.
From MaRDI portal
Publication:1606232
DOI10.1016/S0021-7824(00)01198-3zbMath1055.35051OpenAlexW2062512162MaRDI QIDQ1606232
Liliana Gratie, Philippe G. Ciarlet
Publication date: 24 July 2002
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0021-7824(00)01198-3
Variational inequalities (49J40) Nonlinear boundary value problems for linear elliptic equations (35J65) Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of equilibrium problems in solid mechanics (74G10) Plates (74K20)
Related Items (6)
From the classical to the generalized von Kármán and Marguerre--von Kármán equations ⋮ ON THE GENERALIZED VON KÁRMÁN EQUATIONS AND THEIR APPROXIMATION ⋮ Generalized Marguerre-von Kármán Equations for a Nonlinearly Elastic Shallow Shell ⋮ Removable singularities for the Von Karman equations ⋮ Asymptotic modelling of a Signorini problem of generalized Marguerre-von Kármán shallow shells ⋮ Numerical analysis of the generalized von Kármán equations
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Boundary conditions and mode jumping in the buckling of a rectangular plate
- Les equations de von Kármán
- A justification of the von Kármán equations
- A remark on the von Kármán equations
- A justification of a nonlinear model in plate theory
- A justification of nonlinear properly invariant plate theories
- Unilateral eigenvalue problems for nonlinearly elastic plates: An approach via pseudo-monotone operators
- The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity
- Les espaces du type de Beppo Levi
- Justification de modèles de plaques non linéaires pour des lois de comportement générales
- Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension
- Une méthode de Γ-convergence pour un modèle de membrane non linéaire
- Équations de von Kármán généralisées
- On the existence of the Airy function in Lipschitz domains. Application to the traces of H2
- Nonlinear problems of elasticity
This page was built for publication: Generalized von Kármán equations.