Efficient nonparametric estimation of a distribution function.
From MaRDI portal
Publication:1608626
DOI10.1016/S0167-9473(01)00035-4zbMath1119.62328MaRDI QIDQ1608626
Publication date: 8 August 2002
Published in: Computational Statistics and Data Analysis (Search for Journal in Brave)
Distribution functionSymmetryBootstrapNonparametric MLEAuxiliary samplesConditional symmetrySymmetrized estimator
Related Items (4)
On a characterization theorem of symmetry about a point ⋮ Bootstrap confidence interval estimation of mean via ranked set sampling linear regression ⋮ Estimation of a bivariate symmetric distribution function. ⋮ آزمون خودگردان برای فرض تقارن بر اساس آنتروپی تجمعی
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Variance reduction for Bernoulli response variables in simulation
- Simulated power functions
- Some asymptotic theory for the bootstrap
- Some bootstrap tests of symmetry for univariate continuous distributions
- An introduction to copulas. Properties and applications
- Estimation of a bivariate symmetric distribution function.
- Control Variates for Probability and Quantile Estimation
- A kernel method for estimating finite population distribution functions using auxiliary information
- On estimating distribution functions and quantiles from survey data using auxiliary information
- Consistency of the Maximum Likelihood Estimator in the Presence of Infinitely Many Incidental Parameters
- Estimating the Power of the Two-Sample Wilcoxon Test for Location Shift
- Power transformations to symmetry
- The Use of Control Variates in Monte Carlo Estimation of Power
- A Nonparametric Procedure for Choosing a Location Test
- Determining the Appropriate Sample Size for Nonparametric Tests for Location Shift
- On power transformations to symmetry
- Nonparametric estimation for a symmetric distribution
- Some contributions to contingency-type bivariate distributions
This page was built for publication: Efficient nonparametric estimation of a distribution function.