Uniform (projective) hyperbolicity or no hyperbolicity: a dichotomy for generic conservative maps
DOI10.1016/S0294-1449(01)00094-4zbMath1125.37308OpenAlexW2050860224WikidataQ125366756 ScholiaQ125366756MaRDI QIDQ1611401
Publication date: 16 September 2002
Published in: Annales de l'Institut Henri Poincaré. Analyse Non Linéaire (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIHPC_2002__19_1_113_0
Entropy and other invariants, isomorphism, classification in ergodic theory (37A35) Smooth ergodic theory, invariant measures for smooth dynamical systems (37C40) Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.) (37D20) Generic properties, structural stability of dynamical systems (37C20) Partially hyperbolic systems and dominated splittings (37D30)
Related Items (14)
Cites Work
- Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2
- Analycity properties of the characteristic exponents of random matrix products
- Uniform (projective) hyperbolicity or no hyperbolicity: a dichotomy for generic conservative maps
- A formula with some applications to the theory of Lyapunov exponents
- Genericity of zero Lyapunov exponents
- Lyapunov exponents with multiplicity 1 for deterministic products of matrices
- Equilibrium states and the ergodic theory of Anosov diffeomorphisms
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Uniform (projective) hyperbolicity or no hyperbolicity: a dichotomy for generic conservative maps