Equivalence between rank-one convexity and polyconvexity for isotropic sets of \({\mathbb R}^{2{\times}2}\). I
From MaRDI portal
Publication:1612629
DOI10.1016/S0362-546X(01)00807-0zbMath1004.49007MaRDI QIDQ1612629
Pierre Cardaliaguet, Rabah Tahraoui
Publication date: 25 August 2002
Published in: Nonlinear Analysis. Theory, Methods \& Applications. Series A: Theory and Methods (Search for Journal in Brave)
Nonlinear elasticity (74B20) Energy minimization in equilibrium problems in solid mechanics (74G65) Methods involving semicontinuity and convergence; relaxation (49J45)
Related Items
Equivalence between rank-one convexity and polyconvexity for isotropic sets of \({\mathbb R}^{2{\times}2}\). II, Automatic quasiconvexity of homogeneous isotropic rank-one convex integrands, A rank-one convex, nonpolyconvex isotropic function on with compact connected sublevel sets, Polyconvexity equals rank-one convexity for connected isotropic sets in \(\mathbb M^{2\times 2}\), A differential inclusion: the case of an isotropic set
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Differentiability properties of symmetric and isotropic functions
- Sur la faible fermeture de certains ensembles de contraintes en élasticité non-linéaire plane. (Weak closure of certain sets of constraints in plane nonlinear elasticity)
- Fine phase mixtures as minimizers of energy
- Conditions necessaires de faible fermeture et de 1-rang convexity en dimension 3. (Necessary conditions for weak closure and rank-one convexity in three-dimensional elasticity)
- An example of a quasiconvex function that is not polyconvex in two dimensions
- On the failure of ellipticity of the equations for finite elastostatic plane strain
- On the structure of quasiconvex hulls
- On the non-locality of quasiconvexity
- Implicit partial differential equations
- On various semiconvex hulls in the calculus of variations
- Existence of minimizers for non-quasiconvex functionals arising in optimal design
- Equivalence between rank-one convexity and polyconvexity for isotropic sets of \({\mathbb R}^{2{\times}2}\). II
- Microstructures with finite surface energy: The two-well problem
- Optimal design and relaxation of variational problems, III
- Quelques remarques sur les notions de $1-$rang convexité et de polyconvexité en dimensions 2 et 3
- ELASTIC MATERIALS WITH TWO PREFERRED STATES
- Rank-one convexity does not imply quasiconvexity
- Proposed experimental tests of a theory of fine microstructure and the two-well problem
- On the different convex hulls of sets involving singular values
- Restrictions on microstructure
- Sur une Classe de Fonctionnelles non Convexes et Applications
- Sur l'équivalence de la 1-rang convexité et de la polyconvexité des ensembles isotropiques de
- Constitutive inequalities for isotropic elastic solids under finite strain
- Direct methods in the calculus of variations