Divergence operators and odd Poisson brackets
DOI10.5802/aif.1892zbMath1054.53094arXivmath/0002209OpenAlexW1856295459MaRDI QIDQ1613950
Yvette Kosmann-Schwarzbach, Juan Monterde
Publication date: 3 September 2002
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0002209
graded Lie algebrasSchouten bracketMaurer-Cartan equationGerstenhaber algebraquantum master equationBatalin-Vilkovisky algebragraded connectionsupermanifold, Berezinian volume
Poisson manifolds; Poisson groupoids and algebroids (53D17) Supermanifolds and graded manifolds (58A50) Graded Lie (super)algebras (17B70) Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics (70G45) Poisson algebras (17B63) Connections (general theory) (53C05)
Related Items
Cites Work
- From Poisson algebras to Gerstenhaber algebras
- D-modules on supermanifolds
- Supercanonical algebras and Schouten brackets
- Integral curves of derivations
- Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras
- Gerstenhaber algebras and BV-algebras in Poisson geometry
- Geometry of Batalin-Vilkovisky quantization
- Developing the covariant Batalin-Vilkovisky approach to string theory
- Semiclassical approximation in Batalin-Vilkovisky formalism
- Batalin-Vilkovisky algebras and two-dimensional topological field theories
- Lectures on the geometry of Poisson manifolds
- The modular automorphism group of a Poisson manifold
- Graded Poisson structures on the algebra of differential forms
- The exterior derivative as a Killing vector field
- New perspectives on the BRST-algebraic structure of string theory
- ON THE GEOMETRY OF THE BATALIN-VILKOVISKY FORMALISM
- A NOTE ON THE ANTIBRACKET FORMALISM
- The Geometry of the Master Equation and Topological Quantum Field Theory
- Poisson cohomology and quantization.
- Integration on Noncompact Supermanifolds
- Geometry of superspace with even and odd brackets
- Duality for Lie-Rinehart algebras and the modular class
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item