The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems
From MaRDI portal
Publication:1613960
DOI10.5802/aif.1900zbMath1041.11074OpenAlexW2500643792WikidataQ123346938 ScholiaQ123346938MaRDI QIDQ1613960
Radan Kučera, Cornelius Greither
Publication date: 3 September 2002
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2002__52_3_735_0
Class field theory (11R37) Cyclotomic extensions (11R18) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33)
Related Items (2)
l-Class groups of cyclic extensions of prime degree l ⋮ On bases of Washington's group of circular units of some real cyclic number fields
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On Chinburg's root number conjecture
- On the equivariant Tamagawa number conjecture for Tate motives
- Circulant Graphs and 4-Ranks of Ideal Class Groups
- A Local Approach to Chinburg's Root Number Conjecture
- The Lifted Root Number Conjecture for some cyclic extensions of ℚ
- Arithmetischer Beweis des Satzes über die Anzahl der durch vier teilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper.
This page was built for publication: The lifted root number conjecture for fields of prime degree over the rationals: an approach via trees and Euler systems