Représentations galoisiennes et opérateurs de Bessel \(p\)-adiques. (Galois representations and \(p\)-adic Bessel operators)
From MaRDI portal
Publication:1613961
DOI10.5802/aif.1901zbMath1014.12007OpenAlexW2462534203WikidataQ105533004 ScholiaQ105533004MaRDI QIDQ1613961
Publication date: 3 September 2002
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_2002__52_3_779_0
Other analytic theory (analogues of beta and gamma functions, (p)-adic integration, etc.) (11S80) Ramification and extension theory (11S15) (p)-adic differential equations (12H25)
Related Items
Book Review: $p$-adic differential equations ⋮ On admissible tensor products inp-adic Hodge theory ⋮ Bessel \(F\)-isocrystals for reductive groups
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A cohomological construction of Swan representation over the Witt ring. I, II
- Local-to-global extensions of representations of fundamental groups
- On the calculation of some differential Galois groups
- Arithmétique des algèbres de quaternions
- Differential modules and singular points of p-adic differential equations
- Bessel functions as p-adic functions of the argument
- Slope filtration of quasi-unipotent overconvergent \(F\)-isocrystals
- Modules différentiels sur les couronnes (Differential modules over annuli)
- On the index theorem for \(p\)-adic differential equations. II
- On the index theorem for \(p\)-adic differential equations. III
- Local indices of \(p\)-adic differential operators corresponding to Artin-Schreier-Witt coverings
- Canonical extensions, irregularities and the Swan conductor
- Galois theory of differential equations, algebraic groups and Lie algebras
- Sur la rationalité des représentations d'Artin
- Twisted Kloosterman Sums and p-Adic Bessel Functions
- Gauss Sums, Kloosterman Sums, and Monodromy Groups. (AM-116)
- Finite local monodromy of overconvergent unit-root F -isocrystals on a curve
- Finiteness theorems for the cohomology of an overconvergent isocrystal on a curve