Genus formulas and Greenberg's conjecture
From MaRDI portal
Publication:1616066
DOI10.1007/s40316-017-0093-yzbMath1423.11188OpenAlexW2766215976WikidataQ123022429 ScholiaQ123022429MaRDI QIDQ1616066
Publication date: 31 October 2018
Published in: Annales Mathématiques du Québec (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s40316-017-0093-y
Iwasawa invariantsGreenberg's conjecturecyclotomic $\mathbb{Z}_p$-extensiongenus formulasunified criteria
Related Items (6)
\(p\)-adic approach of Greenberg's conjecture for totally real fields ⋮ Normes universelles et conjecture de Greenberg ⋮ Abelian prinicipalization of groups of logarithmic classes ⋮ Algorithmic complexity of Greenberg's conjecture ⋮ Tamely ramified Iwasawa modules having no non-trivial pseudo-null submodules ⋮ Ideal norms in the cyclotomic tower and Greenberg's conjecture
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Iwasawa descent and co-descent for units modulo circular units. With an appendix by J.-R. Belliard.
- On the Stickelberger ideal and the circular units of an abelian field
- Regulators and Iwasawa modules
- Unités cyclotomiques, unités semilocales et \(\mathbb{Z}_\ell\)-extensions. II
- On \(p\)-adic zeta functions and \(\mathbb{Z}_p\)-extensions of certain totally real number fields
- The class group of \(\mathbb{Z}_p\)-extensions over totally real number fields
- \(p\)-adic approach of Greenberg's conjecture for totally real fields
- On mirror equalities and certain weak forms of Greenberg's conjecture
- Logarithmic classes of number fields
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- A note on the capitulation in \(\mathbb{Z}_ p\)-extensions
- On the cyclotomic norms and the Leopoldt and Gross-Kuz'min conjectures
- Sur une forme faible de la conjecture de Greenberg II
- On Cohomology Groups of Units for Z p -Extensions
- On the Iwasawa Invariants of Totally Real Number Fields
- A note on the ideal class group of the cyclotomic Zp-extension of a totally real number field
- On Modified Circular Units and Annihilation of real Classes
- Sous-modules d'unit\'es en th\'eorie d'Iwasawa
- ON THE THETA SERIES ATTACHED TO $D_{m}^{+}$–LATTICES
- THE TATE MODULE FOR ALGEBRAIC NUMBER FIELDS
- On capitulation cokernels in Iwasawa theory
- On capitulation of \(S\)-ideals in \(\mathbb{Z}_p\)
This page was built for publication: Genus formulas and Greenberg's conjecture