Parabolic Kazhdan-Lusztig polynomials of type \(-1\) for quasi-minuscule quotients
From MaRDI portal
Publication:1621426
DOI10.1016/j.jcta.2018.08.006zbMath1400.05269OpenAlexW2889226550MaRDI QIDQ1621426
Publication date: 8 November 2018
Published in: Journal of Combinatorial Theory. Series A (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jcta.2018.08.006
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Cites Work
- Parabolic Kazhdan-Lusztig polynomials for quasi-minuscule quotients
- Differentiating the Weyl generic dimension formula with applications to support varieties
- The Hodge theory of Soergel bimodules.
- Deformed Kazhdan-Lusztig elements and Macdonald polynomials
- On some geometric aspects of Bruhat orderings. II: The parabolic analogue of Kazhdan-Lusztig polynomials
- Representations of Coxeter groups and Hecke algebras
- Parabolic Kazhdan-Lusztig polynomials and Schubert varieties
- Kazhdan-Lusztig and \(R\)-polynomials, Young's lattice, and Dyck partitions.
- On the decomposition matrices of the quantized Schur algebra
- Combinatorics of Coxeter Groups
- On the quantum cohomology of adjoint varieties
- An inversion formula for relative kazhdan—lusztig polynomials
- Parabolic Kazhdan-Lusztig polynomials for Hermitian symmetric pairs
- Kazhdan-Lusztig Polynomials for Hermitian Symmetric Spaces
- A combinatorial formula for Macdonald polynomials
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Parabolic Kazhdan-Lusztig polynomials of type \(-1\) for quasi-minuscule quotients