A scalable preference model for autonomous decision-making
DOI10.1007/s10994-018-5705-5zbMath1461.68234OpenAlexW2800447677WikidataQ129879914 ScholiaQ129879914MaRDI QIDQ1621876
Sinead A. Williamson, Wolfgang Ketter, Markus Peters, Tom Heskes, Maytal Saar-Tsechansky, Perry Groot
Publication date: 12 November 2018
Published in: Machine Learning (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10994-018-5705-5
Gaussian processespreferencesautonomous agentsBayesian inferencediscrete choiceautonomous decision-makingLaplace inference
Inference from stochastic processes and prediction (62M20) Bayesian inference (62F15) Decision theory (91B06) Learning and adaptive systems in artificial intelligence (68T05) Individual preferences (91B08) Agent technology and artificial intelligence (68T42)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Marketing models of consumer heterogeneity
- Active sampling for class probability estimation and ranking
- Efficiently learning the preferences of people
- Preference Learning
- Efficient Clustering for Orders
- Context-Dependent Preferences
- Discrete Choice Methods with Simulation
- Case-Based Decision Theory
This page was built for publication: A scalable preference model for autonomous decision-making