The log term in the Bergman and Szegő kernels in strictly pseudoconvex domains in \(\mathbb C^2\)
From MaRDI portal
Publication:1623081
DOI10.25537/dm.2018v23.1659-1676zbMath1407.32018arXiv1606.05871MaRDI QIDQ1623081
Publication date: 23 November 2018
Published in: Documenta Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1606.05871
Related Items (2)
Kähler-Einstein metrics and obstruction flatness of circle bundles ⋮ Bounded strictly pseudoconvex domains in \(\mathbb{C}^2\) with obstruction flat boundary II
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The log-term of the Bergman kernel of the disc bundle over a homogeneous Hodge manifold
- On a set of polarized Kähler metrics on algebraic manifolds
- CR structures with group action and extendability of CR functions
- Parabolic invariant theory in complex analysis
- Sur le noyau de Bergman des domaines de Reinhardt
- Boundary behaviour of the complex Monge-Ampère equation
- Real hypersurfaces in complex manifolds
- Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains
- Pseudo-hermitian structures on a real hypersurface
- Invariant theory for conformal and CR geometry
- Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in \(\mathbb{C}^ 2\)
- Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes
- Symplectic submanifolds and almost-complex geometry
- Scalar curvature and projective embeddings. I
- The log term of the Szegö kernel
- The Bergman kernel and biholomorphic mappings of pseudoconvex domains
- Construction of boundary invariants and the logarithmic singularity of the Bergman kernel
- Ramadanov conjecture and line bundles over compact Hermitian symmetric spaces
- Umbilical points on three dimensional strictly pseudoconvex CR manifolds. I: Manifolds with \(\mathrm{U}(1)\)-action
- Szegő kernel, regular quantizations and spherical CR-structures
- Logarithmic singularity of the Szegö kernel and a global invariant of strictly pseudoconvex domains
- On the Riemann mapping theorem
- \(Q\)-prime curvature on CR manifolds
- Psuedo-Einstein Structures on CR Manifolds
- On the existence of a complete Kähler metric on non-compact complex manifolds and the regularity of fefferman's equation
- Q and Q-prime curvature in CR geometry
- Uniformization of strictly pseudoconvex domains. I
This page was built for publication: The log term in the Bergman and Szegő kernels in strictly pseudoconvex domains in \(\mathbb C^2\)