Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes
From MaRDI portal
Publication:1624152
DOI10.1155/2018/9752178zbMath1402.52010OpenAlexW2891267137WikidataQ129234069 ScholiaQ129234069MaRDI QIDQ1624152
Publication date: 15 November 2018
Published in: Journal of Function Spaces (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1155/2018/9752178
Inequalities and extremum problems involving convexity in convex geometry (52A40) Length, area, volume and convex sets (aspects of convex geometry) (52A38)
Related Items (9)
Orlicz version of mixed moment tensors ⋮ Orlicz mixed chord-integrals ⋮ Orlicz mixed radial Blaschke-Minkowski homomorphisms ⋮ The log-Aleksandrov-Fenchel inequality ⋮ The \(L_p\)-mixed geominimal surface areas ⋮ The multiple radial Blaschke-Minkowski homomorphisms ⋮ Orlicz log-Minkowski inequality ⋮ Unnamed Item ⋮ Unnamed Item
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Dar's conjecture and the log-Brunn-Minkowski inequality
- Dual Orlicz-Brunn-Minkowski theory
- The Brunn-Minkowski-Firey inequality for nonconvex sets
- The Orlicz centroid inequality for star bodies
- Rényi divergence and \(L_p\)-affine surface area for convex bodies
- On the Orlicz Minkowski problem for polytopes
- Orlicz dual mixed volumes
- Orlicz-Brunn-Minkowski inequalities for Blaschke-Minkowski homomorphisms
- \(\mathrm{SL}(n)\) invariant valuations on polytopes
- An asymmetric affine Pólya-Szegő principle
- The Brunn-Minkowski-Firey theory. I: Mixed volumes and the Minkowski problem
- Orlicz dual affine quermassintegrals
- Affine isoperimetric inequalities in the functional Orlicz-Brunn-Minkowski theory
- On the dual Orlicz mixed volumes
- Orlicz centroid bodies
- General affine surface areas
- The even Orlicz Minkowski problem
- General \(L_{p}\) affine isoperimetric inequalities
- Orlicz projection bodies
- The \(L^p\)-Busemann-Petty centroid inequality
- \(L_ p\) affine isoperimetric inequalities.
- Orlicz mean dual affine quermassintegrals
- Sharp affine \(L_ p\) Sobolev inequalities.
- Surface bodies and \(p\)-affine surface area
- The Brunn-Minkowski-Firey theory. II: Affine and geominimal surface areas
- Dual mixed Orlicz-Brunn-Minkowski inequality and dual Orlicz mixed quermassintegrals
- The planar Orlicz Minkowski problem in the \(L^1\)-sense
- Asymmetric affine \(L_p\) Sobolev inequalities
- Affine Orlicz Pólya-Szegő principle for log-concave functions
- New \(L_p\) affine isoperimetric inequalities
- The Orlicz Brunn-Minkowski inequality
- The \(L_p\)-Minkowski problem and the Minkowski problem in centroaffine geometry
- The Orlicz-Brunn-Minkowski theory: a general framework, additions, and inequalities
- A new proof of the Orlicz Busemann-Petty centroid inequality
- Inequalities for general mixed affine surface areas
- The Centro-Affine Hadwiger Theorem
- Mixed Projection Inequalities
- Volume Inequalities forLp‐Zonotopes
- Volume of Mixed Bodies
- Orlicz-Brunn-Minkowski inequality for radial Blaschke-Minkowski homomorphisms
- $L_p$ John Ellipsoids
- On the $L_{p}$-Minkowski problem
- On the reverse L p –busemann–petty centroid inequality
- Polar Means of Convex Bodies and a Dual to the Brunn-Minkowski Theorem
- $\mathrm {SL}(n)$-contravariant $L_p$-Minkowski valuations
- Convex Bodies The Brunn-MinkowskiTheory
- SL(n)-covariantLp-Minkowski valuations
- $p$-Means of Convex Bodies.
This page was built for publication: Orlicz-Aleksandrov-Fenchel inequality for Orlicz multiple mixed volumes