Modeling sequence evolution in acute HIV-1 infection
DOI10.1016/j.jtbi.2009.07.038zbMath1403.92296OpenAlexW2013914180WikidataQ37384535 ScholiaQ37384535MaRDI QIDQ1628892
Beatrice H. Hahn, Bette T. Korber, Michael S. Saag, Eric L. Delwart, Brandon F. Keele, Alan S. Perelson, Kimmy T. Pham, Ha Youn Lee, Tanmoy Bhattacharya, J. Michael Kilby, Michael P. Busch, Gayathri S. Athreya, Jesus F. Salazar-Gonzalez, Brian Gaschen, Paul A. Goepfert, George M. Shaw, Elena Edi Giorgi
Publication date: 11 December 2018
Published in: Journal of Theoretical Biology (Search for Journal in Brave)
Full work available at URL: http://europepmc.org/articles/pmc2760689
Epidemiology (92D30) Applications of statistics to biology and medical sciences; meta analysis (62P10) Monte Carlo methods (65C05) Medical epidemiology (92C60) Research exposition (monographs, survey articles) pertaining to biology (92-02)
Related Items (6)
Uses Software
Cites Work
- Monte Carlo estimates of natural variation in HIV infection
- Stochastic modeling of the dynamics of \(CD4^ +\) \(T\)-cell infection by HIV and some Monte Carlo studies
- Viral load and stochastic mutation in a Monte Carlo simulation of HIV
- Two‐Sample Tests for Comparing Intra‐Individual Genetic Sequence Diversity between Populations
- A stochastic modeling of early HIV-1 population dynamics
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Modeling sequence evolution in acute HIV-1 infection