The \((k,s)\)-fractional calculus of \(k\)-Mittag-Leffler function
From MaRDI portal
Publication:1631020
DOI10.1186/s13662-017-1176-4zbMath1422.26005OpenAlexW2606953315MaRDI QIDQ1631020
Publication date: 5 December 2018
Published in: Advances in Difference Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1186/s13662-017-1176-4
Fractional derivatives and integrals (26A33) Mittag-Leffler functions and generalizations (33E12) Laplace transform (44A10) Inequalities for sums, series and integrals (26D15)
Related Items (13)
Erratum to: ``The \((k,s)\)-fractional calculus of \(k\)-Mittag-Leffler function ⋮ Some \(k\)-fractional extension of Grüss-type inequalities via generalized Hilfer-Katugampola derivative ⋮ Fractional Hermite-Hadamard inequalities containing generalized Mittag-Leffler function ⋮ On the Generalization of κ-Fractional Hilfer-Katugampola Derivative with Cauchy Problem ⋮ Generalized fractional operator with applications in mathematical physics ⋮ Fractional version of Ostrowski-type inequalities for strongly \(p\)-convex stochastic processes via a \(k\)-fractional Hilfer-Katugampola derivative ⋮ The new Mittag-Leffler function and its applications ⋮ Estimates of classes of generalized special functions and their application in the fractional \((k, s)\)-calculus theory ⋮ Harmonic Hermite–Hadamard Inequalities Involving Mittag-Leffler Function ⋮ Unnamed Item ⋮ Ostrowski-type inequalities for \(n\)-polynomial \(\mathscr{P} \)-convex function for \(k\)-fractional Hilfer-Katugampola derivative ⋮ On Grüss inequalities within generalized \(\mathcal{K}\)-fractional integrals ⋮ Analytical properties of \((q, k)\)-Mittag Leffler function
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Grüss type integral inequalities for generalized Riemann-Liouville \(k\)-fractional integrals
- Certain Hermite-Hadamard type inequalities via generalized \(k\)-fractional integrals
- Applications of fractional calculus in solving Abel-type integral equations: surface-volume reaction problem
- Fractional relaxation-oscillation and fractional diffusion-wave phenomena.
- Some applications of fractional calculus in engineering
- Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel
- Wright functions as scale-invariant solutions of the diffusion-wave equation
- A distributional study of discrete classical orthogonal polynomials
- \((k,s)\)-Riemann-Liouville fractional integral inequalities for continuous random variables
- Generalized k-Mittag-Leffler function and its composition with pathway integral operators
- (k,s)-Riemann-Liouville fractional integral and applications
- On fractional partial differential equations related to quantum mechanics
- On Mittag-Leffler type function and applications
- Generalized mittag-leffler function and generalized fractional calculus operators
- Some new inequalities for (k,s)-fractional integrals
- Computation of the generalized Mittag-Leffler function and its inverse in the complex plane
- Über Orthogonalpolynome, die q‐Differenzengleichungen genügen
- Über Polynome, die gleichzeitig zwei verschiedenen Orthogonalsystemen angehören
This page was built for publication: The \((k,s)\)-fractional calculus of \(k\)-Mittag-Leffler function