Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Analyzing business process anomalies using autoencoders

From MaRDI portal
Publication:1631839
Jump to:navigation, search

DOI10.1007/s10994-018-5702-8zbMath1475.68320arXiv1803.01092OpenAlexW3126098308MaRDI QIDQ1631839

Alexander Seeliger, Stefan Luettgen, Timo Nolle, Max Mühlhäuser

Publication date: 7 December 2018

Published in: Machine Learning (Search for Journal in Brave)

Full work available at URL: https://arxiv.org/abs/1803.01092

zbMATH Keywords

autoencoderbusiness intelligenceprocess mininganomaly detectiondeep learning


Mathematics Subject Classification ID

Artificial neural networks and deep learning (68T07)



Uses Software

  • Scikit
  • ImageNet
  • Adam
  • IsolationForest
  • AlexNet


Cites Work

  • Support-vector networks
  • Hidden Markov Models for Speech Recognition
  • Learning representations by back-propagating errors
  • Supervised versus unsupervised binary-learning by feedforward neural networks
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1631839&oldid=13935646"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 1 February 2024, at 04:41.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki