An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation
DOI10.3934/cpaa.2019041zbMath1474.37097OpenAlexW2897662009MaRDI QIDQ1633417
Publication date: 20 December 2018
Published in: Communications on Pure and Applied Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.3934/cpaa.2019041
pseudodifferential operatorsdichotomynonautonomous dynamical systemshyperbolic orbits and setsdistributions and ultradistributionstopological linear spaces of test functions
Heat equation (35K05) Stability problems for infinite-dimensional dissipative dynamical systems (37L15) Hyperbolicity, Lyapunov functions for infinite-dimensional dissipative dynamical systems (37L45)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Attractors for infinite-dimensional non-autonomous dynamical systems
- Semiflows for differential equations with locally bounded delay on solution manifolds in the space \(C^1 ((-\infty, 0, {\mathbb R}^n)\)]
- Semigroups of linear operators and applications to partial differential equations
- Geometric theory of semilinear parabolic equations
- Study of a model in the theory of complexes of pseudodifferential operators
- Dichotomies in stability theory
- Flots d'Anosov a Distributions Stable et Instable Differentiables
- Local invariant manifolds for delay differential equations with state space in<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>C</mml:mi><mml:mn>1</mml:mn></mml:msup><mml:mo form="prefix">(</mml:mo><mml:mrow><mml:mo form="prefix">(</mml:mo><mml:mo>-</mml:mo><mml:mo>∞</mml:mo><mml:mn>,0</mml:mn><mml:mo form="postfix"></mml:mo><mml:mo>,</mml:mo><mml:msup><mml:mi>ℝ</mml:mi><mml:mi>n</mml:mi></mml:msup><mml:mo form="postfix">)</mml:mo></mml:mrow></mml:mrow></mml…]
This page was built for publication: An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation