Some isolation results for \(f\)-harmonic maps on weighted Riemannian manifolds with boundary
DOI10.1016/j.jmaa.2018.10.057zbMath1457.53019OpenAlexW2898470642WikidataQ115345974 ScholiaQ115345974MaRDI QIDQ1633537
Abdolhakim Shouman, Said Ilias
Publication date: 20 December 2018
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jmaa.2018.10.057
manifold with densityconvex boundary\(f\)-harmonic maps\(f\)-mean curvature\((p, f)\)-harmonic mapsBakry-Émery-Ricci curvature
Global Riemannian geometry, including pinching (53C20) Differential geometric aspects of harmonic maps (53C43) Harmonic, subharmonic, superharmonic functions on other spaces (31C05)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Eigenvalue inequalities for minimal submanifols and P-manifolds
- Comparison geometry for the Bakry-Emery Ricci tensor
- A new result on the pinching of the first eigenvalue of the Laplacian and the Dirichlet diameter conjecture
- Sobolev inequalities on a weighted Riemannian manifold of positive Bakry-Émery curvature and convex boundary
- Sobolev inequalities and isolation results for harmonic maps
- Gap phenomena for \(p\)-harmonic maps
- Quantum phenomenon of the energy density of a harmonic map to a sphere
- Topology of steady and expanding gradient Ricci solitons via f-harmonic maps
- \(f\)-harmonic maps which map the boundary of the domain to one point in the target
- Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative. (Kählerian manifolds of non-negative first Chern class and Riemannian manifolds with non-negative generalized Ricci curvature)
- Harmonic Maps of small Energy
- A Report on Harmonic Maps
- The heat kernel weighted Hodge Laplacian on noncompact manifolds
- Harmonic Mappings of Riemannian Manifolds
This page was built for publication: Some isolation results for \(f\)-harmonic maps on weighted Riemannian manifolds with boundary