Seifert fibering operators in 3d \( \mathcal{N}=2 \) theories

From MaRDI portal
Publication:1635098

DOI10.1007/JHEP11(2018)004zbMATH Open1404.81253arXiv1807.02328MaRDI QIDQ1635098

Author name not available (Why is that?)

Publication date: 18 December 2018

Published in: (Search for Journal in Brave)

Abstract: We study 3d mathcalN=2 supersymmetric gauge theories on closed oriented Seifert manifold---circle bundles over an orbifold Riemann surface---, with a gauge group G given by a product of simply-connected and/or unitary Lie groups. Our main result is an exact formula for the supersymmetric partition function on any Seifert manifold, generalizing previous results on lens spaces. We explain how the result for an arbitrary Seifert geometry can be obtained by combining simple building blocks, the "fibering operators." These operators are half-BPS line defects, whose insertion along the S1 fiber has the effect of changing the topology of the Seifert fibration. We also point out that most supersymmetric partition functions on Seifert manifolds admit a discrete refinement, corresponding to the freedom in choosing a three-dimensional spin structure. As a strong consistency check on our result, we show that the Seifert partition functions match exactly across infrared dualities. The duality relations are given by intricate (and seemingly new) mathematical identities, which we tested numerically. Finally, we discuss in detail the supersymmetric partition function on the lens space L(p,q)b with rational squashing parameter b2inmathbbQ, comparing our formalism to previous results, and explaining the relationship between the fibering operators and the three-dimensional holomorphic blocks.


Full work available at URL: https://arxiv.org/abs/1807.02328



No records found.


No records found.








This page was built for publication: Seifert fibering operators in 3d \( \mathcal{N}=2 \) theories

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q1635098)