A note on degenerate Bernoulli numbers and polynomials associated with \(p\)-adic invariant integral on \(\mathbb{Z}_p\)
DOI10.1016/j.amc.2015.02.068zbMath1390.11049OpenAlexW2009760747MaRDI QIDQ1636834
Taekyun Kim, Dmitry V. Dolgy, Dae San Kim
Publication date: 7 June 2018
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2015.02.068
Umbral calculus (05A40) Exact enumeration problems, generating functions (05A15) Binomial coefficients; factorials; (q)-identities (11B65) Bernoulli and Euler numbers and polynomials (11B68) Other analytic theory (analogues of beta and gamma functions, (p)-adic integration, etc.) (11S80)
Related Items (14)
Cites Work
- Identities involving values of Bernstein, \(q\)-Bernoulli, and \(q\)-Euler polynomials
- \(q\)-Volkenborn integration
- A degenerate Staudt-Clausen theorem
- Symmetry properties of higher-order Bernoulli polynomials
- Symmetryp-adic invariant integral on ℤpfor Bernoulli and Euler polynomials
- Higher-order Cauchy of the second kind and poly-Cauchy of the second kind mixed type polynomials
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A note on degenerate Bernoulli numbers and polynomials associated with \(p\)-adic invariant integral on \(\mathbb{Z}_p\)