Precise and fast computation of inverse Fermi-Dirac integral of order 1/2 by minimax rational function approximation
DOI10.1016/j.amc.2015.03.015zbMath1464.65023OpenAlexW1972648206MaRDI QIDQ1636894
Publication date: 7 June 2018
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.amc.2015.03.015
function approximationFermi-Dirac integralrational function approximationminimax approximationinverse Fermi-Dirac integral
Symbolic computation and algebraic computation (68W30) Computation of special functions and constants, construction of tables (65D20) Statistical mechanics of solids (82D20) Approximation algorithms (68W25) Numerical integration (65D30)
Related Items (3)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Analytical computation of generalized Fermi-Dirac integrals by truncated Sommerfeld expansions
- Double exponential formulas for numerical integration
- Precise and fast computation of Fermi-Dirac integral of integer and half integer order by piecewise minimax rational approximation
- The Fermi-Dirac integrals $$\mathcal{F}_p (\eta ) = (p!)^{ - 1} \int\limits_0^\infty {\varepsilon ^p (e^{\varepsilon - \eta } + 1} )^{ - 1} d\varepsilon $$
- Algorithm 779: Fermi-Dirac functions of order -1/2, 1/2, 3/2, 5/2
- Rational Chebyshev approximations for Fermi-Dirac integrals of orders -1/2, 1/2 and 3/2
- The Electric Conductivity of Simple Semiconductors
This page was built for publication: Precise and fast computation of inverse Fermi-Dirac integral of order 1/2 by minimax rational function approximation