The Plancherel formula for the line bundles on \(\mathrm{SL}(n + 1, \mathbb{R})/S(\mathrm{GL}(1,\mathbb{R})\times \mathrm{GL}(n, \mathbb{R}))\)
From MaRDI portal
Publication:1637015
DOI10.1016/S0252-9602(17)30130-3zbMath1399.22016OpenAlexW2772998182MaRDI QIDQ1637015
Publication date: 7 June 2018
Published in: Acta Mathematica Scientia. Series B. (English Edition) (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0252-9602(17)30130-3
Plancherel formulapseudo-Riemannian symmetric spacespherical distributionsCasimir operatorsPoisson kernels
Semisimple Lie groups and their representations (22E46) Classical hypergeometric functions, ({}_2F_1) (33C05)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \((\mathrm{GL}(n+1,\mathbb R),\mathrm{GL}(n,\mathbb R))\) is a generalized Gelfand pair
- Spherical distributions on the pseudo-Riemannian space SL(n, \({\mathbb{R}})/GL(n-1,\,{\mathbb{R}})\)
- Distributions spheriques sur les espaces hyperboliques
- Distributions Invariant under an Orthogonal Group of Arbitrary Signature.
This page was built for publication: The Plancherel formula for the line bundles on \(\mathrm{SL}(n + 1, \mathbb{R})/S(\mathrm{GL}(1,\mathbb{R})\times \mathrm{GL}(n, \mathbb{R}))\)