Bootstrapping \( \mathcal{N}=2 \) chiral correlators

From MaRDI portal
Publication:1638081

DOI10.1007/JHEP01(2016)025zbMATH Open1388.81056arXiv1510.03866MaRDI QIDQ1638081

Author name not available (Why is that?)

Publication date: 12 June 2018

Published in: (Search for Journal in Brave)

Abstract: We apply the numerical bootstrap program to chiral operators in four-dimensional mathcalN=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of mathcalN=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.


Full work available at URL: https://arxiv.org/abs/1510.03866



No records found.


No records found.








This page was built for publication: Bootstrapping \( \mathcal{N}=2 \) chiral correlators

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q1638081)