The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions

From MaRDI portal
Publication:1638170

DOI10.1007/JHEP01(2016)140zbMATH Open1388.81323arXiv1510.07803OpenAlexW3100171007MaRDI QIDQ1638170

Author name not available (Why is that?)

Publication date: 12 June 2018

Published in: (Search for Journal in Brave)

Abstract: We present the details of the analytic calculation of the three-loop angle-dependent cusp anomalous dimension in QCD and its supersymmetric extensions, including the maximally supersymmetric mathcalN=4 super Yang-Mills theory. The three-loop result in the latter theory is new and confirms a conjecture made in our previous paper. We study various physical limits of the cusp anomalous dimension and discuss its relation to the quark-antiquark potential including the effects of broken conformal symmetry in QCD. We find that the cusp anomalous dimension viewed as a function of the cusp angle and the new effective coupling given by light-like cusp anomalous dimension reveals a remarkable universality property -- it takes the same form in QCD and its supersymmetric extensions, to three loops at least. We exploit this universality property and make use of the known result for the three-loop quark-antiquark potential to predict the special class of nonplanar corrections to the cusp anomalous dimensions at four loops. Finally, we also discuss in detail the computation of all necessary Wilson line integrals up to three loops using the method of leading singularities and differential equations.


Full work available at URL: https://arxiv.org/abs/1510.07803



No records found.


No records found.








This page was built for publication: The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q1638170)