Wave characteristics of nanotubes conveying fluid based on the non-classical Timoshenko beam model incorporating surface energies
DOI10.1007/S13369-016-2132-4zbMath1390.74043OpenAlexW2312236751MaRDI QIDQ1639452
Amir Norouzzadeh, Raheb Gholami, Mohammad A. Darabi, Reza Ansari
Publication date: 12 June 2018
Published in: Arabian Journal for Science and Engineering (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13369-016-2132-4
wave propagationsurface stressgeneralized differential quadrature methodGurtin-Murdoch elasticity continuumTimoshenko beam theoryfluid-conveying nanotubes
Rods (beams, columns, shafts, arches, rings, etc.) (74K10) Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.) (74F10) Micromechanics of solids (74M25)
Related Items (4)
Cites Work
- The size-dependent natural frequency of Bernoulli-Euler micro-beams
- A continuum theory of elastic material surfaces
- Surface stress in solids
- Experiments and theory in strain gradient elasticity.
- A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects
- Thin plate theory including surface effects
- Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress
- Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films
- Flow-induced flutter instability of cantilever carbon nanotubes
- Nonlocal polar elastic continua
- Effects of couple-stresses in linear elasticity
- Size-Dependent Eshelby’s Tensor for Embedded Nano-Inclusions Incorporating Surface/Interface Energies
This page was built for publication: Wave characteristics of nanotubes conveying fluid based on the non-classical Timoshenko beam model incorporating surface energies