Uniform in bandwidth consistency of nonparametric regression based on copula representation
DOI10.1016/j.spl.2018.01.021zbMath1463.62118OpenAlexW2793598226MaRDI QIDQ1640948
Cheikh Tidiane Seck, Salim Bouzebda, Issam Elhattab
Publication date: 14 June 2018
Published in: Statistics \& Probability Letters (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.spl.2018.01.021
dependence functionempirical processnonparametric regressionuniform consistencyuniform in bandwidthcopula representationkernel-type-estimator
Nonparametric regression and quantile regression (62G08) Characterization and structure theory for multivariate probability distributions; copulas (62H05) Order statistics; empirical distribution functions (62G30) Functional limit theorems; invariance principles (60F17)
Related Items (9)
Uses Software
Cites Work
- A general result on the uniform in bandwidth consistency of kernel-type function estimators
- Proving consistency of non-standard kernel estimators
- U-processes: Rates of convergence
- An introduction to copulas.
- Weighted uniform consistency of kernel density estimators with general bandwidth sequences
- Uniform in bandwidth consistency of conditional \(U\)-statistics
- Maximum penalized likelihood estimation. Volume II: Regression
- A strong consistency of a nonparametric estimate of entropy under random censorship
- Nonparametric regression analysis of longitudinal data
- General asymptotic confidence bands based on kernel-type function estimators
- A distribution-free theory of nonparametric regression
- Weak convergence and empirical processes. With applications to statistics
- On the strong approximation of bootstrapped empirical copula processes with applications
- Uniform-in-bandwidth consistency for kernel-type estimators of Shannon's entropy
- Introduction to empirical processes and semiparametric inference
- Uniform in bandwidth consistency of kernel-type function estimators
- An approximation to the density function
- Remarks on Some Nonparametric Estimates of a Density Function
- Estimation Non-paramétrique de la Régression: Revue Bibliographique
- Uniform Central Limit Theorems
- Understanding Relationships Using Copulas
- On Estimation of a Probability Density Function and Mode
- Convergence of stochastic processes
- An empirical process approach to the uniform consistency of kernel-type function estimators
- Combinatorial methods in density estimation
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Uniform in bandwidth consistency of nonparametric regression based on copula representation